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ABSTRACT

Many computer vision problems can be formulated as computing the minimum energy states of
thermal dynamic systems. However, due to the complexity of the energy functions, the solutions to the
minimization problem are very difficult to acquire in practice. Stochastic and deterministic methods exist to
approximate the solutions, but they fail to be both efficient and robust. In this paper, we describe a new
deterministic method - the Highest Confidence First algorithm - to approximate the minimum energy

solution to the image labeling problem under the Maximum A Posteriori (MAP) criterion. This method
uses Markov Random Fields to model spatial prior knowledge of images and likelihood probabilities to

represent external observations regarding hypotheses of image entities. Following an order decided by a
dynamic stability measure, the image entities make local estimates based on the combined knowledge of
priors and observations. We show that, in practice, the solutions so constructed compare favorably to the
ones produced by existing methods and that the computation is more predictable and less expensive.
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MaAlso known as "He who hesitates is last".
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1. Introduction

Probability theory has found many applications in representing the uncertainty of
various kinds of knowledge and in reasoning about the world [Feldman and Yakimov-

sky 19741 [Duda, Hart, and Nilsson 1976] [Peleg 19801 [Pearl 19851. It appeals to the Al
community for many reasons, among which are that it provides a well-developed

mathematical theory for using uncertainty measures in making decisions, and that it pro-
vides well-known ways of incorporating empirical data. However, there have been few suc-

cessful attempts at utilizing this tool in practical machine vision systems. It is apparently

not because this domain is any the less "uncertain" but because the complexity of the

information in this domain hinders the advancement of probabilistic approaches.

It is our goal to demonstrate the practicability of applying the Bayesian-probability
formalism to complex domains, such as the image labeling problem discussed in this paper.

The image labeling problem is to assign labels to image entities such as regions, line seg-

ments, and pixels. The set of labels, usually reflecting the photometric and geometrical

phenomena of the scene, is mutually exclusive and exhaustive at a particular level of

abstraction. Denote the set of labels { 11,2, .... , IQ } as L, and the set of the image entities
{ s, s,..., sN } as S. Any mapping from S to L is a feasible solution to the labeling

problem. To choose an "optimal" solution from the set of feasible solutions - Q, image

observations as well as prior knowledge about spatial relations between labels are used to

evaluate the goodness of each solution. This work follows the probabilistic model for visual

computation proposed in [Chou and Brown 1987b]. Spatial prior knowledge and local visual

observations are separately represented in terms of probabilities. This decoupling provides
a clean and uniform way of modeling information at different levels of abstraction, and

therefore to modularize the design and implementation of probabilistic systems. Bayes'

rule is used to combine priors and observations to form the a posteriori probabilities

representing the updated knowledge. The labeling problem is then formulated as a minimi-

zation problem based on the Bayesian decision rationale. We shall show that by using a
new algorithm proposed here to estimate the optimal solution to the minimization problem 0

so formulated, it is possible to achieve excellent results with relatively little computation,
given a set of reasonable assumptions.

The organization of this paper is as follows. We discuss how to encode the a priori

knowledge of image events with the Markov random field (MRF) models in Section 2 The
Bayesian decision rationale is discussed in Section 3. In Section 4, we review several sto-

chastic relaxation methods that, in principle, could find the optimal solutions given enough

computational resources. We describe a new deterministic estimation algorithm in Section

5 that our experiments indicate to be superior to existing methods. Experiments on edge

detection - an instance of the labeling problem - with both synthetic and natural images

are conducted with an MRF simulation/estimation package implemented by the authors

Results from various estimation schemes are compared in Section 6.

2. Markov Random Fields and Gibbs Distributions

Markov Random Fields have been used for image modeling in many applications for
the past few years [Hassner and Slansky 1980] (Cross and Jain 1983] [Marroquin, Mitter, 6

and Poggio 19851 [Geman and Geman 1984] [Derin and Cole 1986] [Chou and

Brown 1987a]. In this section, we review the properties of MRF's and discuss how to
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e~code prior knowledge in this formalism. We refer the reader to [Kindermann and
Snell 1980] for an extensive treatment of MRF's.

2.1. Noncauoal Markovian Dependency

Let X = {X, sES} denote a set of random variables indexed by S. Without loss of
generality, assume all variables in X have a common state space L, so that XEL. Let
{X= w} be the event {XI1=&Iw, ... , X.N= .},where cuI = (w.a, )2.... ,&8N), w, EL, is a

configuration of X. Since a configuration of X is also a feasible solution to the labeling prob-
lem, 1 also denotes the set of all possible configurations.

Let E be a set of unordered pairs (s,, sj)'s representing the "connections" between the

elements in S. The semantics of the connections will become clear shortly. E defines a
neighborhood system r = {N, I sES}, where N, is the neighborhood of # in the sense that

(1) s fN,, and

(2) rEN, if and only if (s, r)EE.

X is a Markov Random Field with respect to r and P, where P is a probability func-
tion, if and only if

(positivity) P(X=w.) > 0 for all &EU (2.1) %

(Markovianity) P(X,=w,IXr=Wr, rES, r*s) = P(X,=w, IXr=&., rEN,) (2.2)

The set of conditional probabilities on the left-hand side of (2.2) is called the local chorac-
teristics that characterizes the random field. It can be shown that the joint probability dis-
tribution P (X = w) of any random field satisfying (2.1) is uniquely determined by these con-
ditional probabilities [Besag 1974]. An intuitive interpretation of (2.2) is that the contex-
tual information provided by S -s to a is the same as the information provided by the
neighbors of 9. Thus the effects of members of the field upon each other is limited to local
interaction as defined by the neighborhood. Notice that any random field satisfying (2.1) is
an MRF if the neighborhoods are large enough to encompass all the dependencies.

2.2. Encoding Prior Knowledge and Gibbs Distributions

The utility of the MRF concept for image labeling problems is that the prior 0
knowledge about spatial dependencies among the image entities can be adequately modeled
with neighborhoods that are small enough for practical purposes. Very often, the image
entities are regularly structured and prior distributions on the image are homogeneous
and isotropic. In such cases, the number of parameters needed to specify the priors is just a
fraction of QN, where M is the size of the neighborhoods. This is a significant saving over
QN - the number of possible configurations, especially when M is small.

There are difficulties, as stated in [Geman and Geman 1984], associated with using
the MRF formulation by itself:

(1) The joint distribution of the X, is not apparent;

(2) It is extremely difficult to spot local characteristics, i.e., to determine when a given set
of functions are conditional probabilities for some distribution on ..

2
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(1) is not a serious problem for some special classes of MRF models such as Markov
Mesh (MM) processes [Kanal 1980], since their joint distributions can be represented in a
recursive formulation due to the casual dependency assumed. For (2), parametric probabil-
ity distributions such as Gaussian and binomial, have been been used in the literature

[Cross and Jain 1983] [Cohen and Cooper 1987]. Using such distributions further
simplifies the encoding of the local characteristics and has shown some impressive results
on modeling and generating texture patterns. However, whether these kinds of
simplifications preserve the power of MRF's for modeling spatial knowledge remains ques-

tionable.

Fortunately, these difficulties vanished when the following property of MRF's was
realized.

Hammersley.Clifford Theorem: A random field X is an MRF with respect to a neighborhood

system r if and only if there exists a function V such that

I

p(() = e for all wEQ (2.3)
Z

where T and Z are constants and

U(w) = V (W). (2.4)
CEC

C denotes the set of totally connected subgraphs (cliques) with respect to r. Z is a normal-

izing constant and is called the partition function.
The probability distribution defined by (2.3) and (2.4) is called a Gibbs distribution

with respect to r. The class of Gibbs distributions has been extensively applied to model

physical systems, such as ferromagnets, ideal gases, and binary alloys. When such systems

are in a state of thermal equilibrium , the fluctuations of their configurations follow a

Gibbs distribution. In statistical mechanics terminology, U is the energy function of a sys-
tem. The V, functions represent the potentials contributed to the total energy from the
local interactions of the elements of clique c. T, the temperature of the system, controls the

"flatness" of the distribution of the configurations.

Gibbs distributions, and therefore MRF's, possess a property that appears to be desir-
able for modeling - when constrained by a fixed expected value of some sufficient statistic of
the random field, the maximum entropy distribution among the class of distributions com-
patible with the constraint is a Gibbs distribution.

The MRF-Gibbs equivalence not only relates the local conditional probabilities to the
global joint probabilities, but also provides us a conceptually simpler way of specifying
MRF's - specifying potentials. The importance of the joint probabilities will become evident

in the next section. The local characteristics can be computed from the potential function
through the following relation:

= - . ) (2.5)

3



where C, is the set of cliques that contain s, and w' is any configuration of the field that

agrees with &) everywhere except possibly s.

There has been little work that applies statistical estimation methods to estimate

parameters used for specifying MRF's. [Cross and Jain 1983] applies a coding scheme to
estimate the parameters in their binomial distribution models using a maximum likelihood
criterion. [Elliott and Derin 1984] uses a least-square-fit method to estimate potential
functions in the Gibbs distributions of their texture models. These methods are good when
many uncorrupted realizations are available. When such data are difficult to acquire, choos-
ing the clique potentials on an ad hoc basis has been reported to produce promising results
[Geman and Geman 1984] [Marroquin, Mitter, and Poggio 19851. Our experiments (Sec-
tion 6) have also shown good results. These results are not surprising since the notion of
clique potentials provides a simple mapping from "qualitative" spatial knowledge to
numeric values of the parameters specifying the MRF's.

3. Bayesian Decision Rationale and Optimality of Solutions

At various levels of a visual hierarchy, estimations (decisions) must be made based on
the information available. The estimation procedures become complex when the informa-
tion is uncertain, which is usually the case in visual processing. In this section, we exam-
ine the Bayesian decision rationale and the optimal solutions to the labeling problem with
respect to this rationale.

3.1. A Posteriori Probabilities

Section 2 described how to encode prior spatial knowledge using the MRF formalism.
Incorporating the image observations, Bayes' rule can then be used to derive the a pos-
teriori probabilities on Q from the a priori model of the image.

(Bayes' Rule) P(w1O) - P(10)P(O w)(P ( ')P (O 1 WI ) (3.1)

0 denotes the image observations. The likelihood of an event {X w} given 0, P(Q 1W), is

usually derived from the image degradation model involving imaging noise and blur
[Geman and Geman 1984]. [Sher 1987] and [Bolles 1977] show methods to generate likel-
ihood functions from either probabilistic models or statistical data.

For a shift-invariant point-spread function and white Gaussian noise, the a posteriori
distribution associated with the a priori distribution defined by (2.3) and (2.4) is a Gibbs
distribution with respect to a neighborhood system related to r and the support of the
point-spread function [Geman and Geman 1984]. For simplicity, we assume the following
conditional independence, that is generally true when the noise field is independently dis-
tributed.

P(OI4) = 1IP(O,W.) (3.2)

0. denotes a set of image observations over a spatial region dependent on s, typically
including s and its spatially adjacent elements. This assumption appears to be very useful
for fusing and modeling early visual modules [Chou and Brown 1987a] and for texture
modeling [Derin and Cole 1986]. The a posteriori MRF thus has the same neighborhood

4
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system r with the e "ergy function

Uo(w) = 7 V,(W) - T InP(0, Iw.) (3.3)
eEC aES

3.2. Optimal Labelings

The goodness of a labeling , following the Bayesian formalism, is evaluated in terms
of its a posteriori expected loss,

Loss(Z IO) = Xloss( j, )P(w 10) (3.4)~EO

where loss (Z, w) is a penalty associated with the estimate L while the "truth" is W.

One question concerning the applicability of (3.4) is which loss function should be

used for a given task. Except for few simple cases, the answer to this question usually
relies on subjective judgements. One popular choice is assigning a constant penalty to %

incorrect estimates: loss (L,w) equals to a constant (positive) value whenever * , and 0
otherwise. Using this loss function, the configuration minimizing (3.4) maximizes the a pos-
teriori probability P(wI 10), and therefore minimizes the a posteriori energy (3.3) in the MRF
formalism. This Maximum A Posteriori (MAP) criterion has been widely applied to the
labeling problem [Feldman and Yakimovsky 1974] [Geman and Geman 1984] [Derin and
Cole 1986] [Murray and Buxton 1987] (Cohen and Cooper 1987]. Marroquin et al [1985]
suggest that the number of mislabeled image entities of an estimation is a better loss meas-
ure for the labeling problem. They derive the Maximizer of the a Posteriori Marginals
(MPM) estimation - choosing the configuration = I) .• such that

= max P,(lI0) VsES, (3.5)
IEL

where P8 (l 10) denotes the a posteriori marginal probability of 1 on s. In their experiments
the MPM estimator is shown to be superior to the MAP criterion when the signal to noise

ratio is low.

Notice that the rationale of minimizing the loss function in (3.4) does not take the cost
of computation into account, despite the fact that computational cost is usually a primary
consideration in image understanding applications because of their immense configuration
spaces. A sub-optimal estimator with an effective computation procedure would be much
more useful than an optimal estimator that no one could ever compute. It is believed that
the exact evaluation of MRF statistical moments, and therefore (3.4), is generally impossi-
ble since no analytic solutions exist [Hassner and Slansky 1980] [Geman and
Geman 1984]. MAP and MPM can not be exactly determined for the same reason, except
for some simple energy functions. In the rest of the paper, we discuss several numerical

approaches for the approximate evaluations of the MAP and MPM estimations in the MRF
formalism.

4. Stochastic Relaxation Methods

One method that has been successfully used to analyze the behavior of complex sys-
tems is generating sample configurations of a given system through stochastic simulations.

Briefly, the Monte Carlo method of estimating the ensemble average of a variable Y w),

5



< Y> = fY (w)dP(w),

is averaging its values over a set of samples I wl, wR " } drawn from Q. If the sampling

of w's follows the distribution P, then < Y > can be approximated by

< Y> - - (Wd,.

We are interested in sampling procedures that generate configurations according to

Gibbs distributions in the form of (2.3). With such procedures, the sample frequencies of the
realizations of X, can be used as approximations for the marginal probabilities, i.e., MPM
can be estimated; the configurations with higher probabilities are more likely to be sam-
pled, and therefore MAP estimation becomes possible (see Section 4.2). Several procedures

exist for this purpose. The basic idea of these procedures is to construct a regular Markov
chain whose states correspond to the configurations of the system with the limiting distri-
bution being the desired Gibbs distribution. That is, construct PC - the transition matrix of
the chain - in such a way that the following condition holds.

VPc = V, (4.1)

where a is the desired Gibbs measure. At equilibrium, the system's configurations are dis-

tributed according to v since v is the unique invariant measure of the constructed Markov

chain (Kemeny and Snell 1960] .

Consider each state transition of the Markov chain involving only the change of the
state of a single entity in the system. To fulfill the requirement of the chain being regular,
the procedure must continue to "visit" every entity. Let s(t) be the entity being visited at
time t. The change of X,(,) would result a change of the system energy by the amount

specified by the configurations of those cliques that contain s (t) according to (2.4). Stochas-
tic sampling procedures reminiscent of "relaxation" can be designed in the sense that the
state transition of the entity being visited is stochastically decided by the states of the
neighboring entities and itself. We will describe two of the stochastic relaxation pro-
cedures, namely the Metropolis algorithm [Metropolis et al. 1953] and the Gibbs sampler
[Geman and Geman 1984], for their representativeness. Other variations basically follow
the same principle and serve special purposes [Hassner and Slansky 1980] [Cross and

Jain 1983] [Hinton and Sejnowski 1983] .

4.1. The Metropolis Algorithm and the Gibbs Sampler

Let X(t) denotes the state of the system at time step t. The state transition from step

t to t +1 of the Markov chain generated by the Metropolis sampling algorithm consists of
two basic steps:

(1) Randomly select a new configuration w' ( randomly visit an entity s and choose a new
state w',), and compute the energy change AE = E(W') - E(X(t)).

(2) If AE < 0 , set X(t +1) w a'. Otherwise, set X(t +1) to c' or X(t) with probabilities

(() = AE and 1 - E' respectively.

Allowing transitions with energy increases, a common characteristic of all stochastic

relaxation procedures, prevents the sampling process from getting stuck at states of local

6
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energy minimum - an undesirable property of every deterministic hill-climbing procedure
In contrast to the explicit use of the energy difference in the Metropolis algorithm, the
Gibbs sampler uses the local characteristics to construct a Markov chain. A state transition

of the Gibbs sampler also consists two steps:

(1) Visit an entity s.

(2) Randomly select the new state w', for X8 (t +1) following the distribution
v(X5 (t +1)=wO IXr(t),res). Having the form in (2.5), this distribution is generally
easy to compute.

For binary systems, the Gibbs sampler is equivalent to the widely used "Heat Bath"

algorithm - changing the state with probability . Like other relaxation methods,

the above procedures suggest the use of a parallel implementation since "updating" the X,'s
requires propagating information only among neighboring computing units. Extra caution

must be paid to the updating patterns of synchronous machines. For the Metropolis and
Heat Bath algorithms, using any prescribed updating order may result in the Markov chain
not converging to the desired Gibbs distribution v [Marroquin 1985]. Our experiments use
the Gibbs sampler exclusively because it guarantees the coincidence of vt with the invari-

ant measure of the chain as long as neighboring entities are not updated simultaneously.

4.2. The Monte Carlo and Simulated Annealing Methods

The stochastic relaxation scheme can be used to approximate the a posteriori margi-
nal probabilities for the MPM estimation by simulating the equilibrium behavior of the a

posteriori MRF. Since the Markov chain constructed by either the Metropolis algorithm or
the Gibbs sampler leads to the desired limiting distribution regardless of its initial state,
the law of large numbers suggests the marginal probability P,(l 10) be approximated by the
sample frequency of X, = I at equilibrium, that is,

P,(lIO) -1 (X(t)_l )  (4.21n kt=k

where 8(0) = 1, and 0 elsewhere. k is the number of steps for the chain to reach equili-

brium, and n is the total number of steps of the simulation. Practically, experimentation is
needed to determine how large n and k should be to achieve a desirable approximation

accuracy given an arbitrary MRF. Cross and Jain [19831 have observed that in less than
10 iterations (full sweeps over the image entities), their texture modeling system becomes
"stable" when sampled by a variation of the Metropolis algorithm. In general, in the order
of hundreds of iterations are needed for the MPM estimation.

The system temperature - T in (2.3) - also plays an important role in MRF simula-
tions. With low temperatures, the Gibbs distribution strongly favors the low energy

configurations, but the time required for the system to reach equilibrium may be long. The
system may reach equilibrium faster at higher temperatures, but the configurations are
more evenly sampled; i.e., it may require more samples to make accurate MPM estimations.
The idea of simulated annealing [Kirkpatrick, Gelatt, and Vecchi 1983], obviously inspired
by physical annealing, is to reach the minimum energy states of a system by starting the

system at a high temperature and gradually reducing it. In doing so the system tends to

respond to large energy differences at the beginning, and is likely to find a good minimum

7



energy state independent of its starting state. As the temperature decreases, the system
tends to respond to small energy differences, and ideally settles at the lowest energy states

ever encountered. The decreasing sequence of temperatures, called the annealing schedule,
decide. the effectiveness of this process. If the time spent at each temperature is not

enough, the system may not converge to the global minimum states. On the other hand, it
is often computationally prohibitive to use a slowly decreasing schedule. Geman and
Geman [841 have derived an upper bound for the annealing schedules so that the schedules
slower than this bound are guaranteed to converge to the global minimum energy states.
However, this bound is very difficult to decide in practice since it relates to the range of
energy values of the system.

Simulated annealing has been applied in many computer vision tasks that involve
optimization over exponential spaces, including the MAP estimation [Geman and
Geman 1984] and the stereo matching problem [Barnard 1987]. One major concern of
using the stochastic relaxation scheme is its efficiency: at what cost can this scheme deliver
satisfactory results? Not surprisingly, the cost is intolerable for many applications. In the
next section, we describe a new deterministic method to approximate MAP. This method.
following a search path suggested by the visual observations to find a minimum energy
state, appears to give results favorably comparable in practice to the existing relaxation
methods while being computationally less expensive.

5. Deterministic Relaxation Methods

Exact calculation of the MAP estimate is computationally prohibitive. For vision Sys-
tems that require predictable results in reasonable time periods, using suboptimal estima-

tion criteria and/or heuristics in searching for solutions seems to be a reasonable alterna-
tive to the stochastic relaxation scheme. In [Derin and Cole 1986], MAP estimations are
performed on narrow strips of the image. The strips are limited to at most four rows wide
so that MAP can be exact computed for each strip by a dynamic programming algorithm at

feasible cost. For each estimation, only the estimate of the first row of a strip is kept. It
serves as the boundary condition for the next strip consisting of the rest of the rows and a
new one. Though limiting the extent of the (column-wise) interactions, the texture segmen-
tation results appear to he impressive. Before we describe the proposed heuristic-based
algorithm, we examine an iterative relaxation method for estimating MAP.

5.1. Iterative Energy Minimization

A simple version of deterministic iterative relaxation methods for energy minimiza-
tion is the Metropolis algorithm without randomness: Start with an initial configuration.
At each iteration through the image entities, the state of each entity is either changed to

the state that yields maximal decrease of the energy, or is left unchanged if no energy
reduction is possible. The process stops when no more changes can be made. This algo-
rithm is guaranteed to find a local minimum of the energy function since each iteration
strictly decreases the energy value and there are only a finite number of different values of
the energy function. For parallel implementation, convergence is assured if the neighbor-
ing entities are not updated simultaneously.

Unavoidably, the local minimum obtained by the above algorithm may be far from
optimal. Two enhancements are apparently helpful:

8



(1) Start with a better initialization of the MRF. The best one can hope is that the energy
value of the initial configuration falls into the valley of the global minimum. One pos-
sibility is to use the maximum likelihood estimates (MLE) - X5(0 =w, if
max P (O. 11) = P(Oe 1W.).

(2) Escape from shallow valleys. By changing the states of more than one entity at once,
the new configuration may lead to a better local minimum. In a procedure described
in [Cohen and Cooper 1987), the entities with small preferences of the current states
over the others are assigned new states when a local minimum is reached. The relaxa-
tion restarts with the new configuration as the initialization. At each convergence, the
magnitude of the local minimum is estimated, The procedure halting when no
significant change of the magnitudes is observed. The hope if, that the deepest valley
will be found in this process.

Unfortunately, these two modifications are not adequate. The local MLE's are good
only when the noise process is correctly modeled in computing the likelihoods and there are
significant differences among the likelihoods of the hypotheses Frequently these conditions
cannot be met. Cohen and Cooper's procedure, obviously a compromise between stochastic
and deterministic relaxation methods, suggests a tradeoff between speed and performance.

The algorithm of this paper blends the initialization into the estimation process.
Instead of stepping through the configuration space G, this algorithm constructs a
configuration with a local minimal energy measure. Observable evidence and spatial prior
knowledge are combined in the process of the construction, resulting in better results and
efficiency. The details of this algorithm are described next.

5.2. The Highest Confidence First Algorithm

To see how this algorithm works, some terminology needs to be introduced. Let
L = L U110 1 denote the augmented label set, where L = fl, .. ,Q} is the set of labels, and
10 is the null label corresponding to the "uncommitted" state in the construction. Let =0

Jw=(c1, coN)IwEL,VsES} denote the augmented configuration space. Define the aug-
mented a posteriori local energy of lE L with respect to s ES and a configuration W E il as

E, (1) = V'c (0' - T In.P(0, 11), (5.1)
C: 8(c

where wi'E5 is the configuration that agrees with w. everywhere except w', = 1, and V'c is
o if ti, = 10 for any r in c, otherwise it is equal to Vc - the potential function.

The basic idea of this algorithm is to construct a sequence of configurations
W W with the starting configuration wo~ = (10, ,l*- 1), and a terminal configuration
wf(Qg, where U0 (wf) is a local minimum with respect to Q. We say an entity s has made its
current decision 1, IEL, if the just-constructed (current) configuration W in the sequence has
the component w, = 1, and it has not made a decision if ti = 10. Once an entity makes a
decision, it can change this decision to other labels of L but not to 10. To ensure the quality
of the resulting estimate - wf, at each step of the construction we permit only the least
"stable" entity to change/make its decision. We define the stability of a with respect to the
current configuration w, w, 1 , as1
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Gt = min AE,(k,l) if IEL (5.2a)
k(L,k *1

G,W) = - min .AE,(k,j) if 1 = 10 and jEL s.t. E,(j) = min E,(k), (5.2b)

EL,kaj EL

where AE,(j,k) = E,(j) - E,(k) with respect to w.

The stability defined above is a combined measure of the observable evidence and the

a priori knowledge about the preferences of the current state over the other alternatives. A
negative value of G, that is always true for (5.2b), indicates a more stable configuration

will result from an alternative decision. Since an entity has no effect on its neighbors

unless it has made a decision, the entities with large likelihood ratios of one label over the

others - strong external evidence in favor of a label - will be visited early in the construc-
tion sequence. The entities with little idea from the observations will collect information

from the neighbors' decisions to make their decisions; an early decision will be altered if

the neighbors' later decisions are strongly against it. In this way, every step of this con-

struction makes a maximal progress based on the current knowledge about the field - the

G's. This Highest Confidence First algorithm is expected to find the estimate that is "con-

sistent" with the observations and the a priori knowledge.

The Highest Confidence First algorithm can be implemented serially with a heap

(priority queue) maintaining the visiting order of the construction according to the values

of G's in such a way that the top of the heap is the entity with the smallest G value. Updat- %
ing the top's decision will cause the changes of its neighbors' G-values, and therefore the

structure of the heap. The following is the pseudo code for the Highest Confidence First

algorithm:

a= (0, 1o);
top = CreateHeapw);
while (G,,, < 0) "

s = top;
Change-State(o,);
Update.G(G, );
AdjustHeap(s);
foreach (r E N.) j

UpdateG(G,);
AdjustHeap(r);}

return(w);

ChangeState(w,) changes the current state w., of s to the state I such that p,

AE.(l, .) = min AE.(k,ws) if w,EL, or E.(l) = minE(k) if o, = Is . Upon this change
AEL k".. A EL .

taking place, the stability of s changes to positive. UpdateG is called for every entity that

is affected by this change, namely the neighbors of s according to (5.1), to update their sta-

bility measures with respect to the new configuration. AdjustHeap(r) maintains the heap
property by moving r up or down according to its updated G-value.

Several desirable properties of this procedure can easily be verified:
%

10

.'." '' i " ''' v-'t "'" '- .'''-.''' ''- '' . '='.' ,.e. . ,~t ' ' .. _ _" . . "• _"." '.• _. , "•- " .0



(1) Termination: This procedure always returns in finite time. To see this property, let us
consider the two types of Change-State - making and changing a decision -

separately. The procedure can make at most N decisions, one for each entity, since
nullifying decisions is impossible. Let D = (SD,S -SD) be a partition of S such that

SD is the set of entities that have made decisions. Let D =

{JiEQjIaEL V8ESD and w,=/ 0 VS(S-SD} . Since, by (5.1) and (5.2a), changing
the decision of s (SD strictly decreases the function UD : 1  R,

UD (w)= IV',(w) - T I InP(O,),

the procedure can make only a finite number of changes with respect to a fixed parti-
tion D. There are only a finite number of partitions, therefore the total number of

decision changes is finite.

(2) Feasibility: The returned configuration is in (1 - the space of feasible solutions. For if
otherwise, there exists an s such that w, = 10. From (5.2b), G, < 0. This violates the

heap invariant property since it requires G,,p a 0 to exit the while loop.

(3) Optimality: The returned configuration has the locally minimal energy measure with
respect to 0. That is, changing the decision of any single entity can not decrease the
a posteriori energy measure U0 . As above, this property can easily be derived from
(5.2a) and the heap properties.

This implementation takes O(N) comparisons to create the heap and O(log(N)) to
maintain the heap invariance for every visit to an entity, provided the neighborhood size is
small relative to N. The overheads of heap maintenance are well repaid since the procedure
makes progress for every visit, in contrast to the iterative relaxation procedure (Section
5.1) that may make only few changes per iteration (N visits). Our experiments show that
on the average, less than one percent of the entities are visited more than once using the
proposed algorithm while the deterministic relaxation procedure takes around 10 iterations
to reach a local minimum. This advantage becomes more evident as the number of entities

gets larger. Experimental results are strongly in favor of the proposed algorithm for both
efficiency and correctness. They are discussed in Section 6.

5.3. Possible Extensions

Since the order of the deterministic decisions of the entities in a cooperative network
is crucial to the final mutual agreement, the proposed algorithm assumes that good results
can be obtained by delaying the decisions of those entities who have little idea about what
to do until they get enough help from their neighbors. This heuristic can be used along
with other computational methods to achieve, perhaps, better results.

Let us look more closely at the process of achieving a consensus using this heuristic.
At each stage, SD consists of a set of isolated clusters. A cluster is a set of spatially con-
nected (with respect to r) entities. We say two clusters are isolated from each other if none
of the entities of a cluster is a neighbor of any entity of the other cluster. Each cluster
corresponds to an MRF with free boundaries in our formalism. When an entity makes a
decision, a cluster is created or expanded, or clusters are merged. When an entity changes a
decision, the energy of the corresponding MRF is reduced Eventually, all the clusters are
merged and the final agreement corresponds to a local minimum configuration of the
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corresponding MRF.

The notion of growing clusters suggests a natural partition of the image. At any
instance, the entities belonging to the same cluster are tightly related, but they are

independent of the members of other clusters. The addition of a new member to a cluster
may change the decisions of the old members, but the changes are expected to be small due
to the way the clusters are constructed. Therefore, it makes sense to compute the MAP esti-

mates exactly for small clusters early in the process. We believe that by doing so the
results would be better than the results using the horizontal strip partition as in [Derin

and Cole 1986].

The process of growing clusters is similar to annealing in the sense that it responds to

large energy differences earlier than small ones. Nondeterminism can be introduced to
those entities that stay "unstable" - the entities on or exterior to the border of the clusters -
late in the process, since more spatial information is required for them to reach a globally
satisfactory agreement.

The Highest Confidence First algorithm can be implemented with a set of cooperative

computing units. Consider a winner-take-all network where each unit corresponds to an
entity of the image [Feldman and Ballard 1981]. Only the units with the smallest stability
measures can "fire" at one instant; each unit maintains the knowledge about the neighbor-
ing units so that its stability measure can be updated immediately should any neighbor

change its state. The parallelism gained, however, is limited due to the sequential firing
order.

6. Experiments and Results

We have chosen to tackle the well studied problem of edge detection using MRFs as

the underlying formalism. The labeling problem in this context is to assign to each edge
element a label from the set {EDGE, NON-EDGE}. Each of these edge elements is modeled

as an MRF entity. The MRF entities are considered to be situated on the boundary between
two pixels (see Fig. 1). The MRF model used is similar to the "Line Process" MRF used

both by Geman et al [1984] and Marroquin et al [1985]. Hence the MRF is binary, with

2(N 2 -N) entities where the image is a N XN rectangular pixel array.

6.1. Construction of Potential Functions to Encode Prior Knowledge

The spatial relationships between entities we wish to enforce include:

(1) To encourage the growth of continuous line segments,

(2) To discourage abrupt breaks in line segments,

(3) To discourage close parallel lines (competitions) and

(4) To discourage sharp turns in line segments.

A second order neighborhood turns out to be sufficient to enforce all the relationships
we want. In this neighborhood system, each MRF element is adjacent to eight others (see
Fig.s I and 2).%

The second order neighborhood has cliques of sizes 1 through 4 (see Fig. 3). The poten-
tial values we assign to various configurations of these cliques are shown in Fig. 4. These

values form the specification of the potential functions. Therefore potential functions can be
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seen to be specified by about 10 parameters, which are currently assigned in an ad hoc

manner. The rules of thumb that are used to assign values to these parameters are:

Determine Structure Enforcers For each clique, attempt to determine what kind of

structural relation it is uniquely capable of enforcing.

Encode Prior Structural Knowledge By assigning "high" potential values to undesir-

able configurations of the cliques and "low" values to desirable ones, we attempt to ensure
that the final estimate will contain as few of the undesirable ones as possible.

Encode Statistical Prior Knowledge We use the clique consisting of the singleton node

to bring the first order statistics (e.g. the density of EDGEs) of the MRF into line with

what we already know. The potential of the clique when the MRF entity is an EDGE is set

to our estimate of the log of the (local) odds of an entity being an EDGE over a NON-

EDGE, and is set to 0 when it is a NON-EDGE.

A point to be noted is that some of these parameter values are interdependent. For

example, increasing the energy for "break" (Fig. 4b) and "continuation" (Fig. 4c)
configurations simultaneously would be of little use, as the increases would tend to cancel

each other out.

The sensitivity of the results obtained to changes in the parameters specifying the

potential functions depends upon the parameter in question. Our experience is that chang-

ing the potential function associated with the 1-clique had the greatest effect on the final
result, followed by the 2-clique and 4-clique potential functions, in that order. This could be
because the singleton clique controls first order statistics and the larger cliques higher

order statistics, which are known to be less important in distinguishing images

(Julesz 1981].

6.2. Likelihood Generation

We adopt a step-edge with white Gaussian noise model to compute the local likeli-

hoods of an entity s being EDGE or NON-EDGE - P(OI w, = EDGE) and

P(0,1 jt,=NON-EDGE). The observation - 0, - is a 1X4 or 4X1 window of brightness

observations surrounding s. This window of intensity values is assumed to be a realization

of one of the possible events depicted in Figure 5, corrupted by independent Gaussian noise.

The reader is referred to [Sher 1987] for details of probabilistic edge detection.

From (3.2), observe that scaling P(0. I) for every l(L by a constant factor for fixed s
does not change the a posteriori distribution. This fact allows us to use the likelihood

P(o, 1w, =EDGE)
ratios - P(O, I".= EDGE) " as the only input data, thus simplifying the computation of

A w, =NON -EDGE)
the stability measures (5.2). Thresholding the likelihood ratios by the prior (local) odds of
an entity being an EDGE results in the thresholded likelihood ratio (TLR) configuration

that can be considered as an MAP estimate obtained without using contextual information.
In our experiments, we use TLR as the initial configuration whenever possible.

6.3. A General Purpose MRF Simulator

Our experiments use an interactive general-purpose MRF simulator package with

extensive graphics and menu-driven control (Fig. 6). This package takes the description of

the MRF and the likelihood ratios as input and simulates the state transitions of the
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entities comprising the the MRF. The user can specify the estimation algorithm to be used

and also the initialization of the MRF - each entity can be initially set to either a NON-
EDGE or to its TLR state. The input MRF is constrained to be a homogeneous one, so as to

make the time and space needed to run simulations reasonable.

The user provides the description of the MRF to the simulator in a file. This file con-

tains a specification of the nodes comprising each clique, as well as the potential function

associated with it. The user specifies all cliques that a node could belong to in the most
general case, including all instances of a particular clique type that contain the node. (i.e.,
even if all the cliques containing a node are instances of the same clique type, the user

specifies each instance separately). The nodes forming a clique are specified by their coor-
dinates relative to the node of interest, which is defined to be at relative coordinates (0, 0)
Boundary conditions, as in the case of nodes near the border of the MRF, are taken carr o

by the simulator. The potential function is specified as a function that takes as input
configuration vector (a vector of states of nodes of the MRF) and returns a potential vaUe.

The potential function is associated with the clique description, and the ordering of the

node states in the configuration vector passed it is the same as the order the nodes are

specified in the description of the clique itself.

The simulator performs certain preprocessing actions on the description of the MRF

provided by the user, to promote run-time efficiency. The first is to store each potential

function as a table indexed into by a configuration vector. This is done so as to avoid run-

time calling of the user's potential function code , which can be quite complex, replacing it

instead with a simple table lookup. The other is "clique containment", which is based on
the observation that if one clique completely contains the other, then a configuration vector

of the nodes in the larger clique contains implicitly the configuration vector for the smaller

clique. This suggests that by judiciously "adding" together the potential functions for the

clique in the preprocessing stage, we can avoid run-time evaluation of the potential func-

tion for the smaller clique. This simplifies the state transition energy evaluation by reduc-

ing the number of terms to be summed up. If floating-point arithmetic is costly, this can

save considerable computational effort. The preprocessing needs to be done just once, and

can be performed off-line.

6.4. Experimental Results

The simulator described above has been used for a series of experiments aimed at

comparing the performances of various relaxation algorithms with respect to the goodness

of final estimations and rate of convergence. We focus upon algorithms using the MAP cri-

terion, including Highest Confidence First (HCF), Deterministic Iterative Relaxation (DIR)

and stochastic MAP (simulated annealing with Gibbs Sampler (Geman and Geman 1984]).
The results obtained by using stochastic MPM (Monte Carlo approximation to the MPM

estimate [Marroquin, Mitter, and Poggio 1985]) are also presented for the sake of complete-

ness of comparisons, as are those obtained by applying 3X3 Kirsch operators with non-

maximum suppression. The annealing schedule for the stochastic MAP follows the one sug-

gested in [Geman and Geman 1984], i.e. Tk = o where Tk is the temperature for

the kV iteration, with c = 4.0. The stochastic MAP was run for 1000 iterations and the

stochastic MPM for 500 (300 to reach equilibrium, 200 to collect statistics).
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6.4.1. Comparison of Estimates

Here we show the results of three sets of experiments (Fig.s 7 through 9). The figures
for each set contain the original image, the result from the Kirsch operators, the TLR
configuration and the results obtained by using stochastic MAP, stochastic MPM, DIR
(scan-line visiting order), DIR (random visiting order) and HCF algorithms. Except in the

case of the HCF algorithm, where the MRF is initialized to all null (uncommitted) states,
the MRF is initialized to the TLR configuration. The MRF specification is the same
throughout.

Fig. 7a shows a synthetic 50 pixel square "checkerboard" pattern. Each of patches is
10 pixels across, with an intensity chosen randomly from between 0 and 255. The image
has been degraded by independently adding to each pixel Gaussian noise with a mean of 0

and a standard deviation of 16. The HCF and stochastic MPM (Figs. 7g and 7d) are the
same, and have completed most of the desired edges. The DIRs (Figs. 7d and 7e) have
incomplete edges and the stochastic MAP has some undesired edges and incomplete desired
edges (Fig. 7c). The Kirsch operator result is not shown as the edges in this image are
always located exactly in between pixels, while the Kirsch operator assumes edges to be at
pixel locations, and so a comparison would be unfair to the Kirsch operators.

Fig. 8a shows a 50 pixel square natural image of a wooden block with the letter "P"

on it. The MAP estimate has several undesirable lines (Fig. 8d). The MPM estimate per-
forms poorly on the right edge of the block and the inner ring of the "P". The DIR scheme
(serial scan) (Fig. 8f) performs better than the random scan version (Fig. 8g), but is less
than satisfactory on the leg of the "P" and the right edge of the block. The HCF estimate
(Fig. 8h) does not suffer from the above flaws, producing clean, connected edges.

Fig. 9a shows a 10OX124 natural image of 4 plastic blocks with the letters "U", "R",
"C" and "S" on them. Again, the HCF algorithm produces superior results (Fig. 9g). It has

the clearest letter outlines and also is alone in detecting the entire bottom edge of the "R"
block. The MAP estimate partially detects the bottom edge of the "R" block, but generates
redundant lines (Fig. 9c). The MPM estimate has clear letter outlines but does poorly on
the outlines of the left blocks (Fig. 9d). The DIR scheme (scan-line) does well on the letter

outlines but poorly on the block outlines while the random scan version does poorly on both
(Figs. 9e and 9f).

To test the robustness of the algorithms, we conduct further experiments using a likel-
ihood generator with a less complete edge model. Since offset edges (Fig. 5c) are not con-

sidered here, multiple responses become significant as can be seen from the TLR
configuration shown in Fig. 10a. This change strongly affects the estimates produced by all

the algorithms except the HCF, as can be seen from comparing corresponding pictures in
Fig. 9 and Fig. 10.

6.4.2. Rates of Convergence

We restrict ourselves to comparisons between deterministic schemes, as stochastic
schemes do not have any convergence criterion per se - the point of convergence is depen-
dent upon our judgement as to when equilibrium has been reached, and as to when we

have gathered enough statistics to estimate the joint (or marginal) probabilities accurately
(typically several hundred iterations are needed). The deterministic algorithms HCF and
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DIR (scan-line)) have been timed on images of various sizes using a Sun 3/260 with floating
point acceleration. The results are shown in Table 1.

6.5. Analysis of Experimental Results

Goodness of Estimates

(1) The HCF algorithm repeatedly outperforms all other algorithms, giving superior
results both with synthetic and real image data. The common characteristics of the
results we have obtained from using this algorithm are that they all fit well in our
model of the world, which consists of smoothly continuous boundaries, and that they
are consistent with the observations.

(2) The HCF algorithm also appears to be robust, in that it produces an estimate con-
sistent with the observations even when the MRF model used is inadequate, as in the
experiment using the less sophisticated edge detector. Since our MRF model does not
take into account multiple responses, the MAP criterion may not lead to the "best"
results. In this case, the local minimum found by the HCF algorithm is actually better
than the global one as it is based on the strength of external evidence.

(3) The DIR algorithm performs inconsistently and its results depend to a large extent
upon the initialization of the MRF and the visiting order. It is also not clear which, if
any, of the visiting orders studied is better than the other.

(4) The stochastic MAP algorithm with simulated annealing gets stuck in undesirable
local minima, suggesting that our annealing schedule might have lowered the temn-
perature too fast. However, an appropriate annealing schedule seems hard to obtain a
priori.

Convergence Times

(1) The HCF algorithm makes a perhaps surprisingly small number of visits before con-
verging. Clearly, due to the initialization, it must visit every node at least once. What
is surprising is that it visits each node on the average less than 1.01 times before con-
verging. What this implies is that the first decision made by a node is nearly always
the best one.

(2) The convergence times of the DIR algorithms are unpredictable - they vary with visit-
ing order, MRF initialization and even upon the particular image given as input. The
HCF algorithm, in contrast, takes almost the same time on different images of the
same size. The time taken by the HCF algorithm includes the time taken to set up the
heap initially. This may, in some circumstances, be a little unfair. For instance, if one
has to process data online from various information sources [Chou and Brown 1987a]
[Poggio 1985], the heap setting up cost can be treated as a preprocessing cost rather
than a run-time one.

(3) In theory, the time taken by the HCF algorithm should be given by c1N+C2 Vog2 N,
where c I and C 2 are positive constants, N the number of entities to be labeled and V
the number of visits. V here is at least N and we conjecture that on the average it is
eN for some small Q < c <2) constant c. Since the latter term should dominate, one
would expect to see a nonlinear curve in a plot of run time vs. number of entities.
However, the curve is very nearly a straight line, which indicates either that the
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constant c 2 is very small, or that the changed stability values do not propagate very

far up the heap on the average. The former does not appear to be true, as our experi-

ences suggest that the initial heap construction takes far less time than the rest of the

algorithm.

7. Conclusions and Future Research

We have described a new approach for solving the labeling problem. The Highest

Confidence First algorithm, aimed at approximating the MAP estimate with a priori

knowledge modeled by MRF's and external observations represented as likelihoods, leads to

outstanding results in our experiments with both synthetic and natural images. Not only

is this algorithm much faster than stochastic estimation procedures, it also converges
predictably. In addition, the algorithm is robust - in the case that the prior model proves

inadequate, it produces an estimate that is highly consistent with the observations.

We are incorporating the Highest Confidence First algorithm in a multi-modal seg-

menter described in (Chou and Brown 1987a] and believe it to be well suited to a scenario

where the result is to be computed incrementally from sparse and dynamically-arriving

data, possibly from multiple sources.

We are studying methods for systematically specifying the clique potential functions

of MRF's from given realizations. We are also analyzing the rapid convergence of the HCF
algorithm observed in our experiments from a theoretical viewpoint.

The concept of a confidence-based heuristic is likely to be useful whenever there is a

set of cooperating processes attempting to reach a consensus. The idea that the processes
with a greater degree of certainity about their decision, get to make it first, is intuitively

appealing. We are investigating applications of this idea to other fields.
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Figure 1: Relationship between MRF entities and pixels. Figure 2: The second-
order neighborhood system. Figure 3: Cliques in neighborhood system, of size
greater than one. (a)-(c): size 2; (d)-(e): size 3; (f)-(g): size 4
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Figure 4: Potential Assignments for Cliques
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potential values)

WP



P,.

(a)

(b).4

(C)

Figure 5: Image events in a 4X1 window
(a) Edge occuring at center of window,

Wb Homogenous region: no edge occurs,

(c No edge at center, offset edge occurs. 1
(Arrow indicates center of window)
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Figure 6: An interactive general purpose MRF simulator.
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Figure 7: Experiment set. (a) Synthetic 50X50 "checkerboard" image corrupted by independent
Gaussian noise, mean 0, standard deviation 16.0. (b TLR configuration (c Stochastic MAP esti-
mate. Wd Stochastic MPM estimate. (e) DIR (scan-line visiting order) MAP estimate. (f) DIR (ran-
dom visiting order) MAP estimate. (g) HCF result.
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Figure 9: Experiment set. (a) Natural 100X124 image of four plastic blocks. (b) Thinned and

thresholded output of 3X3 Kirsch operators. (c) TLR configuration. (d) Stochastic MAP estimate.

(e) Stochastic MPM estimate. (M DIR (scan-line visiting order) MAP estimate. (g) DIR (random
visiting order) MAP estimate. (h) HCF result.
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Figure 10: Experiments with incomplete edge model - original image in Fig. 9a. (a) TLR

configuration. (b) Stochastic MAP estimate. (c) Stochastic MPM estimate. (d) DIR (scan-line visit-
ing order) MAP estimate. (e) DIR (random visiting order) MAP estimate. (f) HCF result.
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Run Time (sec)

100
-",

0

80

60 -

40

2040

0 10,000 20,000 30,000

Number of Entities in M RF.-

HCF: n6 Individual •Average

DIR: !"3 Individual •Average "'

Table 1: Timing Test Results. The HCF and DIR algorithms are each run on :
two images of the same size, for four image sizes. Individual and average
run-times are shown.

0 P7



I N

FII

/7?7 i

w w w w w w 
0 p

ILI


